Integer programming formulations for the k-edge-connected 3-hop-constrained network design problem
نویسندگان
چکیده
In this paper, we study the k edge-connected L-hop-constrained network design problem. Given a weighted graph G = (V,E), a set D of pairs of nodes, two integers L ≥ 2 and k ≥ 2, the problem consists in finding a minimum weight subgraph of G containing at least k edge-disjoint paths of length at most L between every pairs {s, t} ∈ D. We consider the problem in the case where L = 2, 3 and |D| ≥ 2. We first discuss integer programming formulations introduced in the literature. Then, we introduce new integer programming formulations for the problem that are based on the transformation of the initial undirected graph into directed layered graphs. We present a theoretical compararison of these formulations in terms of LP-bound. Finally, these formulations are tested using CPLEX and compared in a computational study for the case k = 3.
منابع مشابه
On the Hop Constrained Steiner Tree Problem with Multiple Root Nodes
We consider a new network design problem that generalizes the Hop and Diameter Constrained Minimum Spanning and Steiner Tree Problem as follows: given an edge-weighted undirected graph whose nodes are partitioned into a set of root nodes, a set of terminals and a set of potential Steiner nodes, find a minimum-weight subtree that spans all the roots and terminals so that the number of hops betwe...
متن کاملHop Constrained Connected Facility Location: A Hierarchy of Formulations
Connected Facility Location (ConFL) is a problem that combines network design and facility location aspects: given a set of customers, a set of potential facility locations and some inter-connection nodes, ConFL searches for the minimum-cost way of assigning each customer to exactly one open facility, and connecting the open facilities via a Steiner tree. The costs needed for building the Stein...
متن کاملHop constrained Steiner trees with multiple root nodes
We consider a network design problem that generalizes the hop and diameter constrained Steiner tree problem as follows: Given an edge-weighted undirected graph with two disjoint subsets representing roots and terminals, find a minimum-weight subtree that spans all the roots and terminals so that the number of hops between each relevant node and an arbitrary root does not exceed a given hop limi...
متن کاملLayered graph models and exact algorithms for the generalized hop-constrained minimum spanning tree problem
This article studies the generalized hop-constrained minimum spanning tree problem (GHMSTP) which has applications in backbone network design subject to quality-of-service constraints that restrict the maximum number of intermediate routers along each communication path. Different possibilities to model the GHMSTP as an integer linear program and strengthening valid inequalities are studied. Th...
متن کاملHop Constrained Connected Facility Location
The Connected Facility Location (ConFL) problem combines facility location and Steiner trees: given a set of customers, a set of potential facility locations and some inter-connection nodes, ConFL searches for the minimum-cost way of assigning each customer to exactly one open facility, and connecting the open facilities via a Steiner tree. The costs needed for building the Steiner tree, facili...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Networks
دوره 67 شماره
صفحات -
تاریخ انتشار 2016